
ENGG*6405: Finance and Economics for Engineers

Monthly Returns
Amir A. Aliabadi

This document is typeset using LATEX

April 9, 2025

1 Introduction

Python is a widely used high-level programming language for general-purpose programming, cre-
ated by Guido van Rossum and first released in 1991. An interpreted language, Python has a
design philosophy which emphasizes code readability (notably using white space indentation to
delimit code blocks rather than curly brackets or keywords), and a syntax which allows program-
mers to express concepts in fewer lines of code than possible in languages such as C++ or Java.
The language provides constructs intended to enable writing clear programs on both a small and
large scale.

Python features a dynamic type system and automatic memory management and supports multi-
ple programming paradigms, including object-oriented, imperative, functional programming, and
procedural styles. It has a large and comprehensive standard library.

Python interpreters are available for many operating systems, allowing Python code to run on a
wide variety of systems. CPython, the reference implementation of Python, is open source software
and has a community-based development model, as do nearly all of its variant implementations.
CPython is managed by the non-profit Python Software Foundation.

2 Installation

To install Python, go to the following link and download the latest version for the appropriate
operating system. Complete the installation steps.

https://www.python.org/downloads/

The standard application launcher for Python is IDLE, which opens a Shell. A shell is a user
interface for access to an operating system’s services. In general, operating system shells use either
a command-line interface (CLI) or graphical user interface (GUI), depending on a computer’s role
and particular operation. It is named a shell because it is a layer around the operating system
kernel. IDLE is a CLI shell that is shown in Figure 2.

1

Figure 1: The logo of Python programming language.

Another application launcher for Python is IDE from PyCharm that can be downloaded from the
following link. Download the Community version of IDE from PyCharm, which is lightweight and
suitable for scientific development, for the appropriate operating system.

http://www.jetbrains.com/pycharm/download/

By launching IDE from PyCharm the following window opens that asks to open a new project or
an existing project, as shown in Figure 3. Chose to open a new project and specify the directory
path for the project files to be developed.

3 Creating and Running a Simple Program

Click menu item File and then New to create a Python text file. Name the file PythonProgramming.
To run a simple python program to print Hello World! in the output console, enter the following
lines of code within the editor just created for PythonProgramming.

import random

import sys

import os

#This line prints a message

print("Hello World!")

The import command allows us to use modules from various libraries in order to perform specific
programming tasks. The random module allows us to generate a random number. The sys and
os modules launch the operating system. The line #This line prints a message is a comment
that is not going to be executed. The print("...") command prints a message on the output
console. In Python programming both double quotations " and single quotations ’ perform the
same task. For instance we could have used print(’...’) in the above program.

Then click menu item Run and then click Run. A run console sub window opens within the IDE

where the message Hello World! will be printed, as shown in Figure 4.

2

Figure 2: An example of the IDLE shell that is accessible by standard installation of Python on
Mac operating system.

4 Installing Python Interpreter Packages

Python programming is based on numerous interpreter packages that have been developed by
the community. The appropriate packages for a Python program must be installed before a
package can be used using the import command. To install an interpreter package the menu item
PyCharm Community Edition should be used and then Preferences must be clicked. When the
Preferences window opens, the Project Interpreter under the current project can be opened
and viewed, as shown in Figure 5.

The list of all interpreter packages can be viewed by double-clicking on a package. A list of all
interpreters sorted alphabetically can be obtained. It is possible to search for an interpreter by
starting to type the interpreter name as shown in Figure 6. For instance, information about the
numpy interpreter is shown in the Available Packages window. A brief description is provided on
the right. This interpreter is used for array processing for numbers, strings, records, and objects.
The Version and interpreter Author is also provided. It is possible to install the interpreter

3

Figure 3: Openning screen of the IDE launcher.

package by selecting the desired version and then check marking the Install option. Finally the
botton Install Package can be clicked. After installation, this package or module can be used
by the import command in the Python program.

5 Monthly Returns

The Chi-squared test is used to determine if sample data set is consistent with an expected theo-
retical distribution, e.g. normal or student’s t distributions. If we take a sample of nb data points
for which we can compute the expected values according to a distribution (e.g. normal), then we
can compare how well the sampled values agree with the expected distribution. The Chi-squared
can be calculated for the comparison as

χ2 =

nb∑
i=1

[
Sample Values - Expected Values

Standard Deviation

]2
, (1)

where the standard deviation comes from the sample and nb ̸= n is the number of bins for the
comparison. The χ2 value is a reasonable indicator of the agreement. If χ2 = 0, then the expected
distribution and sample match perfectly. The larger the χ2 the lower the probability that the
sample values match the expected distribution. To conduct this test, the sample values are divided
into nb bins. Each bin must contain at least one sample data point. We compute the width of
each bin using ∆r = rrange/nb. We compare ∆r with σ (calculated based on the n sample values).
The number of sample data points falling into each bin k are counted and denoted by Sk (sample
number). The n sample values here are the sum of numbers S1, . . . , Snb

(i.e. n =
∑nb

k=1 Sk). The
expected number Ek is determined by the assumed distribution of r. For instance if a normal

4

Figure 4: A simple program to print Hello World! in the output console.

distribution is assumed, its probability density function can be used to calculate the expected
number Ek by integrating this density function over each bin k. The standard deviation is in the
order of

√
Ek, therefore, the Chi-squared can be computed by [Aliabadi, 2022]

χ2 =

nb∑
k=1

(Sk − Ek)
2

Ek

. (2)

If the assumed distribution of r is correct, then χ2 should be in the order of nb or less. If χ
2 ≫ nb,

then the assumed distribution is probably incorrect. To find the level of agreement between the
observed values and expected distribution, we first compute the number of degrees of freedom as
[Aliabadi, 2022]

ν = nb − c , (3)

where nb is the number of bins and c is the number of constraints, i.e. location and scale parameters
of the distribution, and expected value. For this type of problem c = 3, so ν = nb − 3. Once χ2

and ν are determined, we then use Table 1 to find the level of confidence P . In this table the first

5

Figure 5: Preferences window and the Project Interpreter.

column is degrees of freedom ν the first row provides confidence levels P , and the other rows and
columns are values of χ2 [Aliabadi, 2022].

The number of bins nb must be chosen subject to the constraint that Ek > 5, i.e. in each bin at
least 5 expected values are considered, corresponding to the 5 sampled values. For n ≥ 25, and
for equal-width bins, the numbers of bins may be estimated using the Scott’s formula such that

nb = 1.15n1/3, (4)

where n is the number of sampled values [Aliabadi, 2022].

In this assignment, we will demonstrate the application of the χ2 test for monthly returns of the
S&P 500 index fund since 1900 until 2022.

6 Python Script

The data set provided in file SP500Returns.txt contains 1470 sample points, which provide
monthly returns of the S&P 500 index from 1900 until 2022.

6

Figure 6: The numpy interpreter.

Create a new folder for your project titled Monthly Returns. Copy and paste the following code
in the IDE environment. Name this code Analysis1.py. Note that you must have installed the
numpy, matplotlib, and scipy packages for this code to work.

Analyze monthly returns of S&P 500

Chi Squared test for normal and student’s t distributions

import numpy

import matplotlib.pyplot as plt

import scipy.stats

inputFileName = "SP500Returns.txt"

Consider Bins of 5% width from -30% to +30%

BinWidth = 5

7

Table 1: The percentage probability P that the sampled values agree with the expected assumed
distribution according to the value of χ2 with degrees of freedom ν

ν 0.995 0.990 0.975 0.950 0.900 0.750 0.500 0.250 0.100 0.050
1 0.00 0.00 0.00 0.00 0.01 0.10 0.45 1.32 2.71 3.84
2 0.01 0.02 0.05 0.10 0.21 0.57 1.39 2.77 4.61 5.99
3 0.07 0.11 0.21 0.35 0.58 1.21 2.37 4.11 6.25 7.81
4 0.20 0.29 0.48 0.71 1.06 1.92 3.36 5.39 7.78 9.49
5 0.41 0.55 0.83 1.15 1.61 2.67 4.35 6.63 9.24 11.1
6 0.67 0.87 1.24 1.64 2.20 3.45 5.35 7.84 10.6 12.6
7 0.98 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.0 14.1
8 1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.2 13.4 15.5
9 1.73 2.09 2.70 3.33 4.17 5.90 8.34 11.4 14.7 16.9
10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.5 16.0 18.3
11 2.60 3.05 3.82 4.57 5.58 7.58 10.3 13.7 17.3 19.7
12 3.07 3.57 4.40 5.23 6.30 8.44 11.3 14.8 18.5 21.0
13 3.57 4.11 5.01 5.89 7.04 9.30 12.3 16.0 19.8 22.4
14 4.07 4.66 5.63 6.57 7.79 10.2 13.3 17.1 21.1 23.7
15 4.60 5.23 6.26 7.26 8.55 11.0 14.3 18.2 22.3 25.0
16 5.14 5.81 6.91 7.96 9.31 11.9 15.3 19.4 23.5 26.3
17 5.70 6.41 7.56 8.67 10.1 12.8 16.3 20.5 24.8 27.6
18 6.26 7.01 8.23 9.39 10.9 13.7 17.3 21.6 26.0 28.9
19 6.84 7.63 8.91 10.1 11.7 14.6 18.3 22.7 27.2 30.1
20 7.43 8.26 9.59 10.9 12.4 15.5 19.3 23.8 28.4 31.4
30 13.8 15.0 16.8 18.5 20.6 24.5 29.3 34.8 40.3 43.8
40 20.7 22.2 24.4 26.5 29.1 33.7 39.3 45.6 51.8 55.8

MinReturn = -30

MaxReturn = +30

nb = int((MaxReturn-MinReturn)/BinWidth)

Calculate degrees of freedom for student’s t and Chi squared distributions

nuStudentt = nb - 3

nuChi2 = nb - 3

Make a vector for plotting of probability distribution functions

r = numpy.arange(MinReturn, MaxReturn, 0.1)

#Load data into vectors

data = numpy.loadtxt(inputFileName)

nDataset = len(data)

Year = data[:, 0]

Month = data[:, 1]

Return = data[:, 2]

AverageReturn = numpy.mean(Return)

StdReturn = numpy.std(Return)

print(’Sample Size: ’, nDataset)

print(’Average Return [Percent]: ’, AverageReturn)

print(’Std of Return [Percent]: ’, StdReturn)

Define vector to store the number of samples in each bin

8

Sk = numpy.zeros((nb, 1))

Chi2Normal = 0

Chi2Studentt = 0

Loop through the dataset to populate values of Sk

for k in range(0, nb):

BinMin = MinReturn + k * BinWidth

BinMax = MinReturn + (k + 1) * BinWidth

for j in range(0, nDataset):

if (Return[j] > BinMin) and (Return[j] <= BinMax):

Sk[k] = Sk[k] + 1

Print bin number, bin min, bin max, and number of samples in bin

Must make sure no bin has zero sample count

print(’k, BinMin, BinMax, Sk: ’, k, BinMin, BinMax, Sk[k])

For normal distribution the expected value can be computed by

NormalCDFBinMax = scipy.stats.norm.cdf(BinMax,AverageReturn,StdReturn)

NormalCDFBinMin = scipy.stats.norm.cdf(BinMin,AverageReturn,StdReturn)

ExpectedNormal = nDataset * (NormalCDFBinMax - NormalCDFBinMin)

Chi2Normal = Chi2Normal + ((Sk[k]-ExpectedNormal)**2) / ExpectedNormal

For student’s t distribution the expected value can be computed by

StudenttCDFBinMax = scipy.stats.t.cdf(BinMax, nuStudentt, AverageReturn,

StdReturn)

StudenttCDFBinMin = scipy.stats.t.cdf(BinMin, nuStudentt, AverageReturn,

StdReturn)

ExpectedStudentt = nDataset * (StudenttCDFBinMax - StudenttCDFBinMin)

Chi2Studentt = Chi2Studentt + \

((Sk[k] - ExpectedStudentt) ** 2) / ExpectedStudentt

print(’Student\’s t Distribution Degrees of Freedom: ’, nuStudentt)

print(’Chi Squared Distribution Degrees of Freedom: ’, nuChi2)

print(’Chi Squared Assuming Normal Distribution: ’, Chi2Normal)

print(’Chi Squared Assuming Student\’s t Distribution: ’, Chi2Studentt)

fig = plt.figure(figsize = (10,6))

plt.rc(’xtick’, labelsize = 16)

plt.rc(’ytick’, labelsize = 16)

plt.hist(Return, density = True, color = ’cyan’, edgecolor = ’black’, bins = 100,

label=’Actual Return’)

plt.plot(r, scipy.stats.norm.pdf(r, AverageReturn, StdReturn), color = ’red’,

linewidth = 3, label=’Normal Distribution’)

plt.plot(r, scipy.stats.t.pdf(r, nuStudentt, AverageReturn, StdReturn),

color = ’blue’, linewidth = 3, label=’Student\’s t Distribution’)

9

plt.legend(loc=’upper right’, fontsize=20)

plt.xlabel(’Return [Percent]’, fontsize = 20)

plt.ylabel(’Probability [-]’,fontsize = 20)

plt.tick_params(axis = ’both’, which = ’major’, labelsize = 16)

plt.tight_layout()

plt.savefig(’SP500Returns.pdf’, dpi = 600, bbox_inches = ’tight’)

fig.show()

plt.show()

You must ensure that the file SP500Returns.txt is located in the same directory as Analysis1.py.
Upon running this code, you should obtain the following output in the console:

Sample Size: 1470

Average Return [Percent]: 0.8680272108843538

Std of Return [Percent]: 4.253252671188704

k, BinMin, BinMax, Sk: 0 -30 -25 [1.]

k, BinMin, BinMax, Sk: 1 -25 -20 [2.]

k, BinMin, BinMax, Sk: 2 -20 -15 [2.]

k, BinMin, BinMax, Sk: 3 -15 -10 [23.]

k, BinMin, BinMax, Sk: 4 -10 -5 [63.]

k, BinMin, BinMax, Sk: 5 -5 0 [439.]

k, BinMin, BinMax, Sk: 6 0 5 [801.]

k, BinMin, BinMax, Sk: 7 5 10 [125.]

k, BinMin, BinMax, Sk: 8 10 15 [10.]

k, BinMin, BinMax, Sk: 9 15 20 [1.]

k, BinMin, BinMax, Sk: 10 20 25 [1.]

k, BinMin, BinMax, Sk: 11 25 30 [1.]

Student’s t Distribution Degrees of Freedom: 9

Chi Squared Distribution Degrees of Freedom: 9

Chi Squared Assuming Normal Distribution: [1249931.83937987]

Chi Squared Assuming Student’s t Distribution: [191.49851207]

Process finished with exit code 0

The sample average and standard deviation are R = 0.87% and
√
V = 4.25%, respectively. We

have defined nb = 12 bins (from 0 to 11) with a bin width of ∆r = 5% from −30% to +30%.
This ensures that at least one sample will fall in each bin although most of the samples fall in the
central bins. Note that a few data points beyond this range of bins are excluded from the analysis.
We can ensure that ∆r ∼

√
V .

For application of the normal distribution, we use the same sample average and standard deviation
as the location and scale parameter. The probabilities of expected values can be computed using
the scipy.stats.norm.cdf() function. This function takes the the BinMin or BinMax values,
AverageReturn, and StdReturn to give the cumulative probability of random variable being from
−∞ to BinMin or BinMax. Note that to find the probability of the random variable being between

10

30 20 10 0 10 20 30 40 50
Return [Percent]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y
[-]

Normal Distribution
Student's t Distribution
Actual Return

Figure 7: Historical monthly returns, in percent, of the S&P 500 index from 1900 until 2022;
normal probability distribution function with the same average and standard deviation; student’s
t distribution function with the same average, standard deviation, and degrees of freedom of 9

BinMin and BinMax we must find the difference in the respective cumulative probabilities.

For application of the student’s t distribution, we use the same location and scale parameters. In
addition, we assume ν = 9 for the degrees of freedom, and the probabilities of expected values
can be computed using scipy.stats.t.cdf() function. In addition to the variables noted for the
nurmal distribution, this function also takes the degrees of freedom nuStudentt.

The χ2 is then computed for each case. The code also draws the SP500Returns.pdf figure and
saves it in the same directory. Figure 7 shows the probability density of the actual returns in
percent.

As can be seen, the actual data set has very wide tails, with returns as low as −30% and as
high as +50%. The figure also shows the normal and student’s t probability functions. Note that
neither function fits the central peak, nor do they fit the wide tails; however, at least the student’s
t distribution features wider tails. For application of the χ2 test, we have ν = 9. If we compute
the value of χ2 we find χ2 = 1249932 and χ2 = 191 for the normal and student’s t distribution
functions, respectively. Consulting Table 1 we find that neither probability distribution function
fits the data well. In fact the probability of agreement P is far less than even 0.05. However, at
least the student’s t distribution results in a much lower χ2, and it is a much better choice than
the normal distribution. Note that many other combinations of return ranges and bin widths can

11

be attempted for this test, but this simple demonstration shows the far better applicability of the
student’s t distribution than the normal distribution. At least a financial analyst can hope that
during shorter time periods of analysis no exuberant or catastrophic market events may occur, so
that the student’s t distribution is a practical model.

7 Task Activity

Now that you can successfully run the python code and generate the results. Perform the following
analyses by manipulating the python code Analysis1.py and/or the text file SP500Returns.txt.

Produce the statistics of the monthly return, i.e. average return and standard deviation of return,
for each decade: 1900-1909, 1910-1919, ..., 2010-2019. Produce the statistics of the monthly
return, i.e. average return and standard deviation of return, for periods of three decades: 1900-
1929, 1930-1959, 1960-1989, 1990-2019. List the statistics in a table.

Apply the χ2 test for each period discussed above using both the normal distribution and student’s
t distribution. Report the χ2 values for each case in a table. In addition, provide figures for each
case, showing the probability distribution for the data, the normal distribution, and the student’s
t distribution.

Try to answer the following questions:

1. Is there a relationship between the length of the data set, i.e. one decade, three decades, or
the entire data set, and the magnitude of the statistics of the monthly return, i.e. average
return and standard deviation of return?

2. Is there a relationship between the length of the data set, i.e. one decade, three decades, or
the entire data set, and the magnitude of the χ2?

3. For each case, is the normal distribution or the student’s t distribution describe the proba-
bility of the monthly return better?

4. For the χ2 test of the student’s t distribution, how did you determine the degrees of freedom?

5. How did you determine the width of the bins in each case?

6. Is the χ2 test going to work in case there are no sample data points in a particular bin?

Hint: to decide for the number of bins, you can use the Scott’s formula. Certainly, the bin width
could be wider for each case because the number of data points in each decade or a three-decade
period will be fewer than the number of data points for the entire data set.

Hint: for each analysis it is advisable not to overwrite the original files, but to simply create new
ones, e.g. Analysis2.py, Analysis2.py, ..., SP500Returns1900-1909.txt, ...

12

8 Reporting Guidelines

Please provide your report as a single PDF file. Do not submit your python code or data set as
separate attachments. Instead, list your python code in the body of your report in the Appendix.
The Microsoft Word format will not be accepted. Your report may include the following sections:
Introduction, Methodology, Results and Discussions, Conclusion, and Appendix.

I strongly discourages use of Microsoft Excel for technical communications. You should perform
any data analysis or plotting using Python. If you use Microsoft Excel in any part of your analysis
or reporting, your report will not be graded.

Students are strongly encouraged if they use LATEX(instead of Microsoft Word) to generate the
report. I will give two bonus marks for using LATEX. I generally suggest the open source Text Studio
for production of reports, manuscripts, and theses in LATEX. The program can be downloaded via
https://www.texstudio.org/.

References

[Aliabadi, 2022] Aliabadi, A. A. (2022). Turbulence: A Fundamental Approach for Scientists and
Engineers. Springer, Cham.

13

https://www.texstudio.org/

ENGG*6405: Finance and Economics for Engineers

Portfolio Selection
Amir A. Aliabadi

This document is typeset using LATEX

April 9, 2025

1 Introduction

Portfolio theory attempts to identify different types of risks and returns that are associated with a
group of investments. Once the relevant risks and returns are identified, a risk management strat-
egy is used to 1) retain a risk, 2) neutralize a risk, or 3) transfer a risk [Fabozzi and Jones, 2019].
This is achieved by the proper design of the portfolio, so the desired levels of risk and return are
obtained. Generally it is desired to lower the risk and increase the return, but there are always
trade-offs. The American economist Harry Markowitz pioneered the modern portfolio theory in
his seminal paper [Markowitz, 1952], who was subsequently awarded the Nobel prize in economics.

One way to quantify total risk is to consider the past variations of the share price of a company.
It must be cautioned that this approach has limited utility because past movements of the share
price does not indicate what the future movements will be; however, for lack of other options we
can quantify the risk given past share price movements. The pioneering work in this concept was
performed by [Markowitz, 1952, Markowitz, 1959], who defined risk as the variance V of share price
movements in an arbitrary time period. For instance, the risk, or variance V , can be calculated
over a day, week, month, year, or decade.

By the same token, the return of an investment may be studied using historical share price move-
ments, again, with the caveat that past movements do not indicated attributes of future move-
ments. Price movements can be considered for any given time period T . For instance, the time
period can be a month, for which we can calculate the monthly average share return Rs. Of course,
this return excludes any average dividend return paid by the company to the investor over that
time period, but an average dividend per share and per the same time period D can be considered.
The average total return will be

R = Rs +D. (1)

The return can be computed by considering buying and selling of shares at the beginning and
end of a time period. A sliding window can be defined where the selected time period can move

1

Time

Share Price [$]

T R1
s

R2
s

R3
s

R4
s

Figure 1: Visualization showing successive share returns Ri
s for investments in successive but

inclusive time periods T

to the right continuously. This way, a larger statistical sample can be collected to compute the
average share return Rs. This approach is shown in Figure 1. As seen in the figure, there could
be significant overlap among successive time periods. The average share return can be taken to
give the total return, after adding the dividend per time period, such that

R =

∑n
i=1 R

i
s

n
+D = Rs +D, (2)

where n is the total number of time periods in the sample. If we divide each share return by the
share price at the beginning of each time period, and if we express the dividend normalized by
the share price, then the computed total return would be normalized.

Portfolio allocation refers to splitting a total amount among various investments with unequal
proportions. For instance, a total amount of $1,000 may be invested in two companies 1 and 2.
Suppose that the first investment is $300 in company 1, and the second investment is $700 in
company 2. The fraction of overall investment for companies 1 and 2 are X1 = 0.3 and X2 = 0.7.
Note that X1+X2 = 1. In a general sense, a total amount I can be invested in N companies with
fraction Xi ≥ 0 associated with company i. The total investment amount I and the condition on
Xi can be written as

I =
N∑
i=1

Ii =
N∑
i=1

XiI = X1I +X2I + · · ·+XNI, (3)

N∑
i=1

Xi = X1 +X2 + · · ·+XN = 1. (4)

In this way a portfolio is allocated among N investments. There are some key questions to ask

2

when deciding to determine the values of Xi. For example, what is the overall return R of the
portfolio given historical records? what is the overall risk, or variance V , of the portfolio given
historical records? These questions will be addressed in the next section.

[Markowitz, 1952] shows that, for given values of Xi ≥ 0, the overall return of a portfolio will be
the weighted average of individual returns, i.e.

R =
N∑
i=1

XiRi = X1R1 +X2R2 + · · ·+XNRN , (5)

where Ri is the share plus dividend return of investment i over the time period for historical
analysis. Computation of the risk, or variance V , for the portfolio requires more work. This
requires pairwise analysis of every two companies in the investment. The covariance between
company i and j can be given by

Cij =

∑n
k=1(R

k
i −Ri)(R

k
j −Rj)

n
, (6)

where Ri and Rj are the average share plus dividend return of companies i and j over the historical
record, while Rk

i and Rk
j are specific returns during time period k. This covariance is still calculated

by an average over n records. In a way, the covariance is a form of average for the product of
deviations of two sample variables from their respective averages. Note that if i = j, the covariance
in Equation 6 actually gives us the variance. [Markowitz, 1952] shows that, for given values of
Xi ≥ 0, the overall risk, or variance V , of a portfolio is given by

V =
N∑
i=1

N∑
j=1

XiXjCij = X1X1C11 +X1X2C12 + · · ·+XNXNCNN . (7)

This summation is over all combinations of i and j. Generally, the larger Cij is, then the combina-
tion of investments in companies i and j will increase the risk, or variance V , of the portfolio; while
the smaller Cij is (it could also be negative), then the combination of investments in companies i
and j will decrease the risk, or variance V , of the portfolio.

Any sensible investor is interested to know the answer to the following two questions, when de-
signing a portfolio, i.e. determining the weights Xi:

1. For a given value of portfolio risk, or variance V , what are the values of weights Xi that give
the highest portfolio return R?

2. For a given value of portfolio return R, what are the values of weights Xi that give the lowest
portfolio risk, or variance V ?

These questions lead to mathematical optimization problems that are solved by the method of
Lagrange multipliers, which is a strategy for finding the local maximum or minimum of a function
subject to equality constraints (i.e., subject to the condition that one or many equations have to

3

be satisfied exactly by the chosen values of the variables.). In this case the variables required for
optimization are Xi. Let us frame the portfolio questions above mathematically

1. Maximize R by finding variables Xi that meet the condition V = V∗.

2. Minimize V by finding variables Xi that meet the condition R = R∗.

Here V∗ is an attainable and realistic portfolio risk that the investor is comfortable with, and
R∗ is an attainable and realistic portfolio return that the investor is comfortable with. Rather
than the method of Lagrange multipliers, a stochastic numerical way can be invented to find an
approximate numerical solution to the optimization problem.

Suppose that N = 10, so we have to determine X1, X2, through X10. We can generate thousands,
perhaps millions, of portfolios with random values of Xi. To do so, we define a quantized amount
of weight to be ∆X = 0.1. This means that the weights would be randomly assigned to X1,
X2, through X10, by adding ∆X = 0.1 to any of the Xi values starting from zero. This random
addition repeats 10 times, so by the end

∑N
i=1Xi = 1. For example, to generate the first random

portfolio, and before adding any quantized amount of weight, the portfolio is specified by

X1 = 0.0, X2 = 0.0, X3 = 0.0, X4 = 0.0, X5 = 0.0,

X6 = 0.0, X7 = 0.0, X8 = 0.0, X9 = 0.0, X10 = 0.0.

Suppose that the first ∆X addition is randomly assigned to X3. Then we will have

X1 = 0.0, X2 = 0.0, X3 = 0.1, X4 = 0.0, X5 = 0.0,

X6 = 0.0, X7 = 0.0, X8 = 0.0, X9 = 0.0, X10 = 0.0.

Suppose that the second ∆X addition is randomly assigned to X5. Then we will have

X1 = 0.0, X2 = 0.0, X3 = 0.1, X4 = 0.0, X5 = 0.1,

X6 = 0.0, X7 = 0.0, X8 = 0.0, X9 = 0.0, X10 = 0.0.

The process continues until the quantized weight addition is repeated 10 times. In the end some
weights may experience multiple additions, while some other weights may experience no additions.
For instance, by the end, the first portfolio sample may result in

X1 = 0.0, X2 = 0.6, X3 = 0.1, X4 = 0.0, X5 = 0.1,

X6 = 0.2, X7 = 0.0, X8 = 0.0, X9 = 0.0, X10 = 0.0.

4

After generating a large set of portfolios, we are destined to have created portfolios with multiple
weight preferences. This techniques will not generate all the portfolio possibilities with ∆X = 1,
but it is good enough to give us many various combinations of weights that may be possible.

After generating a large set of portfolios, we are destined to have created portfolios with multiple
weight preferences. This techniques will not generate all the portfolio possibilities with ∆X = 1,
but it is good enough to give us many various combinations of weights that may be possible.

If we plot a map for all the generated portfolios, then we can observe the risk versus return behavior
of each portfolio and decide which one suits our investment preferences given the questions asked
above.

In this assignment, we will demonstrate the application of the portfolio theory. Suppose we con-
sider the following N = 10 investments with share tickers (for investment 1 to 10) of ZSP.TO,
IVOO, VIOO, ZCN.TO, VEE.TO, VIU.TO, ZAG.TO, VBG.TO, VBU.TO, and HEP.TO. These
are Exchange Traded Funds (ETFs). The first three tickers (ZSP.TO, IVOO, VIOO) are invest-
ments in the United States according to S&P indexes for 500 LargeCap, 400 MidCap, and 600
SmallCap companies, respectively. The following three tickers (ZCN.TO, VEE.TO, VIU.TO) are
investments in Canada, emerging markets, and developed markets, respectively, in respective com-
panies. The next three tickers (ZAG.TO, VBG.TO, VBU.TO) are aggregate bonds in Canada,
other international countries, and the United States, respectively. The final ticker (HEP.TO) is
investment in gold. We wish to create the correlation matrix for these shares as well as the risk
versus return map.

2 Python Script

One way to obtain share price data is using the Yahoo Finance website with the address https:
//ca.finance.yahoo.com/. In the search box, you can type ZSP.TO, as an example for the first
investment. Click on Historical Data, adjust the Time Period to the desirable range, and click
Apply. This will show the share prices. Click Download, and your can obtain the share prices in
the spreadsheet format. The column that we desire is the close price. We can assemble a history
of share prices, such as provided in the file StockHistory-10-2022-05-05.xls, which will contain
the share prices for the 10 investments noted above for a period of 6 years, ending as of May 5,
2022. This data should be saved as Text (Tab delimited) (*.txt), which is provided in file
StockHistory-10-2022-05-05.txt. Note that the first line in the data set indicates the share
tickers:

#ZSP IVOO VIOO ZCN VEE VIU ZAG VBG VBU HEP

To obtain the average annual dividends for these investments, one can use various sources of
data. For instance, according to the iPhone’s Stocks application the following dividends can be
obtained.

StockDividend = [0.0130, 0.0107, 0.0088, 0.0281, 0.0165, 0.0228, 0.0303,

0.0067, 0.0204, 0.0682]

5

https://ca.finance.yahoo.com/
https://ca.finance.yahoo.com/

Create a new folder for your project titled Portfolio Selection. Copy and paste the following
code in the IDE environment. Name this code Analysis1.py. Note that you must have installed
the numpy and random packages for this code to work.

#Compute asset allocation and the resulting risk versus return based on

#Markowitz 1952

#Take closing price of 10 stocks

#This code uses a randomized approach to assign the portfolio weights

#Import libraries

import numpy

import random

#Analysis 2022-05-05

inputFileName = "StockHistory-10-2022-05-05.txt"

outputFileName = "PortfolioAnalysis-10-2022-05-05.txt"

#Symbols:

#ZSP.TO, IVOO, VIOO, ZCN.TO, VEE.TO, VIU.TO, ZAG.TO, VBG.TO, VBU.TO, HEP.TO

StockIndex = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

StockDividend = [0.0130, 0.0107, 0.0088, 0.0281, 0.0165, 0.0228, 0.0303,

0.0067, 0.0204, 0.0682]

#Load data into vectors

data = numpy.loadtxt(inputFileName)

nDataset = len(data)

nYears = 6

nStocks = 10

nSample = 500000

For monthly return analysis consider this value for number of days in a month

returnFrequencyDays = int(nDataset / (nYears * 12))

daysInYear = int(nDataset/nYears)

#Define price matrix to be filled later

StockPrice = numpy.zeros((nDataset, nStocks))

for i in range(0, nStocks):

for j in range(0, nDataset):

StockPrice[j][i] = data[j, StockIndex[i]]

#First calculate the stock price return, i.e. share gain, through price history

StockShareGain = numpy.zeros((nDataset-returnFrequencyDays, nStocks))

StockReturn = numpy.zeros((nDataset-returnFrequencyDays, nStocks))

x = [i for i in range(0, returnFrequencyDays)]

6

for i in range(0, nStocks):

#Find the returns in each of the time periods

for j in range(0, nDataset-returnFrequencyDays):

StockShareGain[j][i] = (StockPrice[j + returnFrequencyDays, i] -

StockPrice[j, i]) / StockPrice[j][i]

StockReturn[j][i] = StockShareGain[j][i] + \

StockDividend[i]*returnFrequencyDays/daysInYear

MeanStockReturn = numpy.zeros((nStocks))

CovStockReturn = numpy.zeros((nStocks, nStocks))

Set vectors y and z

Vectory = numpy.zeros((nDataset-returnFrequencyDays))

Vectorz = numpy.zeros((nDataset-returnFrequencyDays))

#print the return of the selected stocks

for i in range(0, nStocks):

MeanStockReturn[i] = numpy.mean(StockReturn[:, i])

print(’Stock Index, Average Monthly Return [Percent]: ’,

i, numpy.round(100 * MeanStockReturn[i], 2))

for y in range(0, nStocks):

for z in range(0, nStocks):

for x in range(0, nDataset-returnFrequencyDays):

Vectory[x] = StockReturn[x][y]

Vectorz[x] = StockReturn[x][z]

Covariance = numpy.cov(Vectory, Vectorz)

CovStockReturn[y][z] = Covariance[0][1]

print(’Stock Index y, z, Covariance of Return [Percent Squared]: ’,

y, z, numpy.round(10000 * CovStockReturn[y][z], 1))

#Now we should sample random portfolios for

#weights X0, X1, ... , X9 >= 0 subject to sum Xi = 1

X = numpy.zeros((nSample, nStocks))

Return = numpy.zeros((nSample))

Risk = numpy.zeros((nSample))

#Find random combinations of X0, X2, ..., X9

#assuming Delta X = 0.1, subject to Sum Xi = 1

#Loop over sample

for a in range(0, nSample):

#Random selection of stock

for b in range(0, nStocks):

RandStock = random.randint(0, nStocks-1)

X[a][RandStock] = X[a][RandStock] + 1/nStocks

7

#Calculate the sum of X0 to X9 and warn user if not close to 1

SumX = numpy.sum(X[a][:])

if SumX > 1.001 or SumX < 0.999:

print(’Warning, Sum of X[a][:] is not close to 1, it is: ’, SumX)

Return[a] = X[a][0] * MeanStockReturn[0] + \

X[a][1] * MeanStockReturn[1] + \

X[a][2] * MeanStockReturn[2] + \

X[a][3] * MeanStockReturn[3] + \

X[a][4] * MeanStockReturn[4] + \

X[a][5] * MeanStockReturn[5] + \

X[a][6] * MeanStockReturn[6] + \

X[a][7] * MeanStockReturn[7] + \

X[a][8] * MeanStockReturn[8] + \

X[a][9] * MeanStockReturn[9]

To calculate risk, all the variances and covariances must be considered

for y in range(0, nStocks):

for z in range(0, nStocks):

Risk[a] = Risk[a] + X[a][y] * X[a][z] * CovStockReturn[y][z]

#Write data to file

outputFile = open(outputFileName, "w")

outputFile.write("#Sample \t Risk \t Return \t "

"X0 \t X1 \t X2 \t X3 \t X4 \t "

"X5 \t X6 \t X7 \t X8 \t X9 \n")

#Now loop through data points and write to file

for a in range(0, nSample):

outputFile.write("%i \t %f \t %f \t "

"%f \t %f \t %f \t %f \t %f \t "

"%f \t %f \t %f \t %f \t %f \n"

% (a, Risk[a], Return[a],

X[a][0], X[a][1], X[a][2], X[a][3], X[a][4],

X[a][5], X[a][6], X[a][7], X[a][8], X[a][9]))

#Close file

outputFile.close()

After running this script, the following console output should be generated. Note that the script
also generates the file PortfolioAnalysis-10-2022-05-05.txt, which contains the return, risk,
and investment weightings for 500,000 sample portfolios.

Stock Index, Average Monthly Return [Percent]: 0 1.14

Stock Index, Average Monthly Return [Percent]: 1 1.07

8

Stock Index, Average Monthly Return [Percent]: 2 1.16

Stock Index, Average Monthly Return [Percent]: 3 0.9

Stock Index, Average Monthly Return [Percent]: 4 0.58

Stock Index, Average Monthly Return [Percent]: 5 0.56

Stock Index, Average Monthly Return [Percent]: 6 0.08

Stock Index, Average Monthly Return [Percent]: 7 -0.05

Stock Index, Average Monthly Return [Percent]: 8 0.05

Stock Index, Average Monthly Return [Percent]: 9 0.97

Stock Index y, z, Covariance of Return [Percent Squared]: 0 0 16.2

Stock Index y, z, Covariance of Return [Percent Squared]: 0 1 15.6

Stock Index y, z, Covariance of Return [Percent Squared]: 0 2 16.0

Stock Index y, z, Covariance of Return [Percent Squared]: 0 3 14.2

Stock Index y, z, Covariance of Return [Percent Squared]: 0 4 11.5

Stock Index y, z, Covariance of Return [Percent Squared]: 0 5 13.5

Stock Index y, z, Covariance of Return [Percent Squared]: 0 6 2.7

Stock Index y, z, Covariance of Return [Percent Squared]: 0 7 1.5

Stock Index y, z, Covariance of Return [Percent Squared]: 0 8 1.3

Stock Index y, z, Covariance of Return [Percent Squared]: 0 9 5.8

Stock Index y, z, Covariance of Return [Percent Squared]: 1 0 15.6

Stock Index y, z, Covariance of Return [Percent Squared]: 1 1 33.2

Stock Index y, z, Covariance of Return [Percent Squared]: 1 2 35.7

Stock Index y, z, Covariance of Return [Percent Squared]: 1 3 19.4

Stock Index y, z, Covariance of Return [Percent Squared]: 1 4 13.1

Stock Index y, z, Covariance of Return [Percent Squared]: 1 5 14.6

Stock Index y, z, Covariance of Return [Percent Squared]: 1 6 2.4

Stock Index y, z, Covariance of Return [Percent Squared]: 1 7 1.6

Stock Index y, z, Covariance of Return [Percent Squared]: 1 8 0.8

Stock Index y, z, Covariance of Return [Percent Squared]: 1 9 5.7

Stock Index y, z, Covariance of Return [Percent Squared]: 2 0 16.0

Stock Index y, z, Covariance of Return [Percent Squared]: 2 1 35.7

Stock Index y, z, Covariance of Return [Percent Squared]: 2 2 41.0

Stock Index y, z, Covariance of Return [Percent Squared]: 2 3 20.6

Stock Index y, z, Covariance of Return [Percent Squared]: 2 4 13.2

Stock Index y, z, Covariance of Return [Percent Squared]: 2 5 15.0

Stock Index y, z, Covariance of Return [Percent Squared]: 2 6 1.9

Stock Index y, z, Covariance of Return [Percent Squared]: 2 7 1.5

Stock Index y, z, Covariance of Return [Percent Squared]: 2 8 0.4

Stock Index y, z, Covariance of Return [Percent Squared]: 2 9 1.1

Stock Index y, z, Covariance of Return [Percent Squared]: 3 0 14.2

Stock Index y, z, Covariance of Return [Percent Squared]: 3 1 19.4

Stock Index y, z, Covariance of Return [Percent Squared]: 3 2 20.6

Stock Index y, z, Covariance of Return [Percent Squared]: 3 3 18.8

Stock Index y, z, Covariance of Return [Percent Squared]: 3 4 11.9

Stock Index y, z, Covariance of Return [Percent Squared]: 3 5 13.6

Stock Index y, z, Covariance of Return [Percent Squared]: 3 6 2.7

Stock Index y, z, Covariance of Return [Percent Squared]: 3 7 1.4

9

Stock Index y, z, Covariance of Return [Percent Squared]: 3 8 1.5

Stock Index y, z, Covariance of Return [Percent Squared]: 3 9 12.2

Stock Index y, z, Covariance of Return [Percent Squared]: 4 0 11.5

Stock Index y, z, Covariance of Return [Percent Squared]: 4 1 13.1

Stock Index y, z, Covariance of Return [Percent Squared]: 4 2 13.2

Stock Index y, z, Covariance of Return [Percent Squared]: 4 3 11.9

Stock Index y, z, Covariance of Return [Percent Squared]: 4 4 18.6

Stock Index y, z, Covariance of Return [Percent Squared]: 4 5 13.6

Stock Index y, z, Covariance of Return [Percent Squared]: 4 6 2.5

Stock Index y, z, Covariance of Return [Percent Squared]: 4 7 1.2

Stock Index y, z, Covariance of Return [Percent Squared]: 4 8 1.5

Stock Index y, z, Covariance of Return [Percent Squared]: 4 9 8.8

Stock Index y, z, Covariance of Return [Percent Squared]: 5 0 13.5

Stock Index y, z, Covariance of Return [Percent Squared]: 5 1 14.6

Stock Index y, z, Covariance of Return [Percent Squared]: 5 2 15.0

Stock Index y, z, Covariance of Return [Percent Squared]: 5 3 13.6

Stock Index y, z, Covariance of Return [Percent Squared]: 5 4 13.6

Stock Index y, z, Covariance of Return [Percent Squared]: 5 5 15.8

Stock Index y, z, Covariance of Return [Percent Squared]: 5 6 2.5

Stock Index y, z, Covariance of Return [Percent Squared]: 5 7 1.2

Stock Index y, z, Covariance of Return [Percent Squared]: 5 8 1.3

Stock Index y, z, Covariance of Return [Percent Squared]: 5 9 4.9

Stock Index y, z, Covariance of Return [Percent Squared]: 6 0 2.7

Stock Index y, z, Covariance of Return [Percent Squared]: 6 1 2.4

Stock Index y, z, Covariance of Return [Percent Squared]: 6 2 1.9

Stock Index y, z, Covariance of Return [Percent Squared]: 6 3 2.7

Stock Index y, z, Covariance of Return [Percent Squared]: 6 4 2.5

Stock Index y, z, Covariance of Return [Percent Squared]: 6 5 2.5

Stock Index y, z, Covariance of Return [Percent Squared]: 6 6 2.6

Stock Index y, z, Covariance of Return [Percent Squared]: 6 7 1.4

Stock Index y, z, Covariance of Return [Percent Squared]: 6 8 1.6

Stock Index y, z, Covariance of Return [Percent Squared]: 6 9 5.7

Stock Index y, z, Covariance of Return [Percent Squared]: 7 0 1.5

Stock Index y, z, Covariance of Return [Percent Squared]: 7 1 1.6

Stock Index y, z, Covariance of Return [Percent Squared]: 7 2 1.5

Stock Index y, z, Covariance of Return [Percent Squared]: 7 3 1.4

Stock Index y, z, Covariance of Return [Percent Squared]: 7 4 1.2

Stock Index y, z, Covariance of Return [Percent Squared]: 7 5 1.2

Stock Index y, z, Covariance of Return [Percent Squared]: 7 6 1.4

Stock Index y, z, Covariance of Return [Percent Squared]: 7 7 1.4

Stock Index y, z, Covariance of Return [Percent Squared]: 7 8 1.1

Stock Index y, z, Covariance of Return [Percent Squared]: 7 9 2.8

Stock Index y, z, Covariance of Return [Percent Squared]: 8 0 1.3

Stock Index y, z, Covariance of Return [Percent Squared]: 8 1 0.8

Stock Index y, z, Covariance of Return [Percent Squared]: 8 2 0.4

Stock Index y, z, Covariance of Return [Percent Squared]: 8 3 1.5

10

Stock Index y, z, Covariance of Return [Percent Squared]: 8 4 1.5

Stock Index y, z, Covariance of Return [Percent Squared]: 8 5 1.3

Stock Index y, z, Covariance of Return [Percent Squared]: 8 6 1.6

Stock Index y, z, Covariance of Return [Percent Squared]: 8 7 1.1

Stock Index y, z, Covariance of Return [Percent Squared]: 8 8 1.5

Stock Index y, z, Covariance of Return [Percent Squared]: 8 9 4.3

Stock Index y, z, Covariance of Return [Percent Squared]: 9 0 5.8

Stock Index y, z, Covariance of Return [Percent Squared]: 9 1 5.7

Stock Index y, z, Covariance of Return [Percent Squared]: 9 2 1.1

Stock Index y, z, Covariance of Return [Percent Squared]: 9 3 12.2

Stock Index y, z, Covariance of Return [Percent Squared]: 9 4 8.8

Stock Index y, z, Covariance of Return [Percent Squared]: 9 5 4.9

Stock Index y, z, Covariance of Return [Percent Squared]: 9 6 5.7

Stock Index y, z, Covariance of Return [Percent Squared]: 9 7 2.8

Stock Index y, z, Covariance of Return [Percent Squared]: 9 8 4.3

Stock Index y, z, Covariance of Return [Percent Squared]: 9 9 64.5

Process finished with exit code 0

We can also format these results in a Table 1

Table 1: Monthly returns and covariances for a portfolio of 10 investment; investments 1 through
10 correspond to tickers ZSP.TO, IVOO, VIOO, ZCN.TO, VEE.TO, VIU.TO, ZAG.TO, VBG.TO,
VBU.TO, and HEP.TO

Investment 1 2 3 4 5 6 7 8 9 10

Ri × 100 1.14 1.07 1.16 0.9 0.58 0.56 0.08 −0.05 0.05 0.97

Cij × 1002

1 16.2 - - - - - - - - -
2 15.6 33.2 - - - - - - - -
3 16.0 35.7 41.0 - - - - - - -
4 14.2 19.4 20.6 18.8 - - - - - -
5 11.5 13.1 13.2 11.9 18.6 - - - - -
6 13.5 14.6 15.0 13.6 13.6 15.8 - - - -
7 2.7 2.4 1.9 2.7 2.5 2.5 2.6 - - -
8 1.5 1.6 1.5 1.4 1.2 1.2 1.4 2.8 - -
9 1.3 0.8 0.4 1.5 1.5 1.3 1.6 1.1 5.8 -
10 5.8 5.7 1.1 12.2 8.8 4.9 5.7 2.8 4.3 64.5

Copy and paste the following code in the IDE environment. Name this code Analysis2.py. Note
that you must have installed the numpy and matplotlib packages for this code to work.

#Portfolio selection to maximize return for a given level of risk

#A portfolio of 20 stocks

#Import libraries

import numpy

import matplotlib.pyplot as plt

11

#Stocks: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

inputFileName = "PortfolioAnalysis-10-2022-05-05.txt"

InvAmount = 10000

minRisk = 0.0010

maxRisk = 0.0030

nSimulations = 70

minRiskDesired = 0.0012

maxRiskDesired = 0.0015

dRisk = (maxRisk - minRisk) / nSimulations

nAverage = 0.0

bestRiskSum = 0.0

bestReturnSum = 0.0

X0Sum = 0.0

X1Sum = 0.0

X2Sum = 0.0

X3Sum = 0.0

X4Sum = 0.0

X5Sum = 0.0

X6Sum = 0.0

X7Sum = 0.0

X8Sum = 0.0

X9Sum = 0.0

#Load data into vectors

data = numpy.loadtxt(inputFileName)

Risk = data[:, 1]

Return = data[:, 2]

X0 = data[:, 3]

X1 = data[:, 4]

X2 = data[:, 5]

X3 = data[:, 6]

X4 = data[:, 7]

X5 = data[:, 8]

X6 = data[:, 9]

X7 = data[:, 10]

X8 = data[:, 11]

X9 = data[:, 12]

nDataset = len(data)

#plot risk versus return

#’’’

12

plt.rc(’xtick’, labelsize = 16)

plt.rc(’ytick’, labelsize = 16)

plt.figure(figsize=(12,7))

plt.title(’Scatter Plot of Risk versus Return’, fontsize=20)

plt.plot(10000 * Risk, 100 * Return, ’co’)

plt.xlim([0, 40])

plt.ylim([0, 2])

plt.xlabel(’Risk [Percent Squared]’, fontsize=20)

plt.ylabel(’Monthly Return [Percent]’, fontsize=20)

plt.savefig(’RiskVersusReturn.png’, dpi=300)

plt.show()

#’’’

print(’Best portfolio: Risk, Return, \n’

’X0, X1, X2, X3, X4, X5, X6, X7, X8, X9 \n’)

for j in range(0, nSimulations):

bestReturn = -100

for i in range(0, nDataset):

if (Risk[i] > minRisk + j * dRisk) \

and (Risk[i] < minRisk + (j + 1) * dRisk) \

and (Return[i] > bestReturn):

bestRisk = Risk[i]

bestReturn = Return[i]

X0Best = X0[i]

X1Best = X1[i]

X2Best = X2[i]

X3Best = X3[i]

X4Best = X4[i]

X5Best = X5[i]

X6Best = X6[i]

X7Best = X7[i]

X8Best = X8[i]

X9Best = X9[i]

if (bestRisk >= minRiskDesired) and (bestRisk <= maxRiskDesired):

nAverage = nAverage + 1

bestRiskSum = bestRiskSum + bestRisk

bestReturnSum = bestReturnSum + bestReturn

X0Sum = X0Sum + X0Best

X1Sum = X1Sum + X1Best

X2Sum = X2Sum + X2Best

X3Sum = X3Sum + X3Best

X4Sum = X4Sum + X4Best

X5Sum = X5Sum + X5Best

X6Sum = X6Sum + X6Best

13

X7Sum = X7Sum + X7Best

X8Sum = X8Sum + X8Best

X9Sum = X9Sum + X9Best

print(’Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: ’,

j, numpy.round(10000 * bestRisk, 1), numpy.round(100 * bestReturn, 2))

print(’X0 to X9: ’, X0Best, X1Best, X2Best, X3Best, X4Best,

X5Best, X6Best, X7Best, X8Best, X9Best)

print(’AvgRisk [Percent Squared], Monthly AvgReturn [Percent]: ’)

print(’%0.4f %0.4f’ % (10000 * bestRiskSum/nAverage, 100 * bestReturnSum/nAverage))

print(’X0Avg X1Avg X2Avg X3Avg X4Avg X5Avg X6Avg X7Avg X8Avg X9Avg: ’)

print(’%0.3f %0.3f %0.3f %0.3f %0.3f %0.3f %0.3f %0.3f %0.3f %0.3f’ %

(X0Sum/nAverage, X1Sum/nAverage, X2Sum/nAverage, X3Sum/nAverage, X4Sum/nAverage,

X5Sum/nAverage, X6Sum/nAverage, X7Sum/nAverage, X8Sum/nAverage, X9Sum/nAverage))

print(’Inv0 Inv1 Inv2 Inv3 Inv4 Inv5 Inv6 Inv7 Inv8 Inv9: ’)

print(’%5.0f %5.0f %5.0f %5.0f %5.0f %5.0f %5.0f %5.0f %5.0f %5.0f’

% (X0Sum/nAverage*InvAmount, X1Sum/nAverage*InvAmount,

X2Sum/nAverage*InvAmount, X3Sum/nAverage*InvAmount, X4Sum/nAverage*InvAmount,

X5Sum/nAverage*InvAmount, X6Sum/nAverage*InvAmount, X7Sum/nAverage*InvAmount,

X8Sum/nAverage*InvAmount, X9Sum/nAverage*InvAmount))

This code divides the risk domain into nSimulations from minRisk to maxRisk. It also takes a
minRiskDesired and maxRiskDesired. It subsequently searches for the maximum return in each
risk interval for the desired range of risk. In the end it averages the risk, return, and the weightings
of investments for the desired range of risk. The following console output can be generated upon
successful execution of this code.

Best portfolio: Risk, Return,

X0, X1, X2, X3, X4, X5, X6, X7, X8, X9

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 0 10.1 0.89

X0 to X9: 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 1 10.4 0.89

X0 to X9: 0.5 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 2 10.8 0.9

X0 to X9: 0.5 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 3 11.1 0.91

X0 to X9: 0.5 0.1 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 4 11.3 0.9

X0 to X9: 0.6 0.1 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 5 11.6 0.91

X0 to X9: 0.6 0.0 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 6 11.9 0.94

14

X0 to X9: 0.5 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 7 12.3 0.94

X0 to X9: 0.5 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 8 12.4 0.99

X0 to X9: 0.6 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 9 12.8 1.01

X0 to X9: 0.6 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 10 13.0 1.02

X0 to X9: 0.6 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 11 13.4 1.01

X0 to X9: 0.7 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 12 13.7 1.0

X0 to X9: 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 13 14.0 1.01

X0 to X9: 0.6 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 14 14.1 1.0

X0 to X9: 0.4 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.1 0.2

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 15 14.5 1.02

X0 to X9: 0.5 0.0 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 16 14.8 1.06

X0 to X9: 0.6 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 17 14.9 1.05

X0 to X9: 0.5 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.2

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 18 15.4 1.11

X0 to X9: 0.6 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 19 15.5 1.09

X0 to X9: 0.6 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 20 15.9 1.06

X0 to X9: 0.5 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 21 16.3 1.07

X0 to X9: 0.7 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 22 16.3 1.07

X0 to X9: 0.5 0.0 0.3 0.0 0.0 0.1 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 23 16.6 1.08

X0 to X9: 0.4 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.2

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 24 17.0 1.07

X0 to X9: 0.6 0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 25 17.3 1.1

X0 to X9: 0.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 26 17.7 1.11

X0 to X9: 0.5 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 27 18.0 1.11

X0 to X9: 0.4 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.2

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 28 18.0 1.09

X0 to X9: 0.4 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 29 18.3 1.1

15

X0 to X9: 0.4 0.1 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 30 18.7 1.11

X0 to X9: 0.4 0.0 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 31 19.1 1.09

X0 to X9: 0.3 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 32 19.4 1.11

X0 to X9: 0.5 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 33 19.6 1.11

X0 to X9: 0.4 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 34 19.7 1.08

X0 to X9: 0.3 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 35 20.1 1.09

X0 to X9: 0.3 0.2 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 36 20.5 1.1

X0 to X9: 0.3 0.1 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 37 20.7 1.09

X0 to X9: 0.4 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 38 21.0 1.09

X0 to X9: 0.3 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 39 21.4 1.09

X0 to X9: 0.2 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.2

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 40 21.6 1.11

X0 to X9: 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 41 21.7 1.1

X0 to X9: 0.2 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.2

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 42 22.1 1.11

X0 to X9: 0.2 0.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.2

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 43 22.6 1.12

X0 to X9: 0.3 0.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 44 22.7 1.09

X0 to X9: 0.2 0.2 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 45 23.0 1.07

X0 to X9: 0.3 0.3 0.3 0.0 0.0 0.1 0.0 0.0 0.0 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 46 23.3 1.08

X0 to X9: 0.2 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 47 23.7 1.1

X0 to X9: 0.3 0.3 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 48 23.8 1.13

X0 to X9: 0.4 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 49 24.0 1.1

X0 to X9: 0.2 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 50 24.5 1.09

X0 to X9: 0.1 0.0 0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 51 24.7 1.1

X0 to X9: 0.3 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 52 24.9 1.05

16

X0 to X9: 0.1 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 53 25.2 1.08

X0 to X9: 0.1 0.3 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 54 25.6 1.09

X0 to X9: 0.2 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 55 25.7 1.09

X0 to X9: 0.1 0.2 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 56 26.2 1.09

X0 to X9: 0.2 0.4 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 57 26.3 1.1

X0 to X9: 0.1 0.1 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 58 26.8 1.1

X0 to X9: 0.2 0.3 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 59 26.9 1.06

X0 to X9: 0.1 0.2 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 60 27.4 1.11

X0 to X9: 0.2 0.2 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 61 27.5 0.99

X0 to X9: 0.0 0.3 0.5 0.1 0.0 0.0 0.0 0.0 0.1 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 62 27.8 1.11

X0 to X9: 0.1 0.3 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 63 28.0 0.98

X0 to X9: 0.2 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.6

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 64 28.3 1.06

X0 to X9: 0.0 0.2 0.6 0.0 0.0 0.1 0.0 0.0 0.0 0.1

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 65 28.7 0.92

X0 to X9: 0.0 0.2 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.6

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 66 28.9 1.06

X0 to X9: 0.0 0.2 0.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 67 29.4 1.02

X0 to X9: 0.1 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.6

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 68 29.7 1.02

X0 to X9: 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.6

Simulation, Best Risk [Percent Squared], Best Monthly Return [Percent]: 69 30.0 0.94

X0 to X9: 0.0 0.2 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.6

AvgRisk [Percent Squared], Monthly AvgReturn [Percent]:

13.6245 1.0117

X0Avg X1Avg X2Avg X3Avg X4Avg X5Avg X6Avg X7Avg X8Avg X9Avg:

0.555 0.055 0.127 0.036 0.045 0.009 0.000 0.000 0.064 0.109

Inv0 Inv1 Inv2 Inv3 Inv4 Inv5 Inv6 Inv7 Inv8 Inv9:

5545 545 1273 364 455 91 0 0 636 1091

Process finished with exit code 0

The code also draws the RiskVersusReturn.png figure and saves it in the same directory. Figure
2 shows the risk versus return for the 500,000 portfolios of investments.

17

Figure 2: Risk versus return of 500,000 portfolios generated randomly based on 10 investments

For this specific example, this portfolio is shown in Table 2. The table shows the weights Xi and
the investment allocation Ii associated with each weight if the investor invests I =$10,000 in total.

Table 2: Portfolio weightsXi and investment amounts Ii assuming a total investment of I =$10,000
in the portfolio; investments 1 through 10 correspond to tickers ZSP.TO, IVOO, VIOO, ZCN.TO,
VEE.TO, VIU.TO, ZAG.TO, VBG.TO, VBU.TO, and HEP.TO

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Weights 0.555 0.055 0.127 0.036 0.045 0.009 0.000 0.000 0.064 0.109
I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

[$] 5545 545 1273 364 455 91 0 0 636 1091

3 Task Activity

Now that you can successfully run the python codes and generate the results. Perform the following
analyses by manipulating the python codes Analysis1.py, Analysis2.py and generating a new
text file for historical sample returns of 10 other investments.

Pick a 6 year period that ends at the present date. Pick 10 investment tickers and obtain their
historical share prices and annual dividends. Construct an investment portfolio. Generate the
correlation matrix and the risk versus return map. Show the correlation matrix and the map.
Identify minimum and maximum desired risks and arrive at a suitable portfolio of investments.
Report the average risk, return, and investment weights.

18

Try to answer the following questions:

1. How did you decide which investment tickers to include?

2. Which sources did you use to find share prices and dividends?

3. What is a realistic range for minimum and maximum desired risk, i.e. minRiskDesired and
maxRiskDesired?

4. What are the suitable values for variables nSimulations, minRisk, and maxRisk? Does your
simulation crash if these values are not appropriate?

5. What are the average risk, return, and investment weights for your portfolio?

Hint: you may have to find the suitable values for variables minRiskDesired, maxRiskDesired,
nSimulations, minRisk, and maxRisk by trial and error.

4 Reporting Guidelines

Please provide your report as a single PDF file. Do not submit your python code or data set as
separate attachments. Instead, list your python code in the body of your report in the Appendix.
The Microsoft Word format will not be accepted. Your report may include the following sections:
Introduction, Methodology, Results and Discussions, Conclusion, and Appendix.

I strongly discourages use of Microsoft Excel for technical communications. You should perform
any data analysis or plotting using Python. If you use Microsoft Excel in any part of your analysis
or reporting, your report will not be graded.

Students are strongly encouraged if they use LATEX(instead of Microsoft Word) to generate the
report. I will give two bonus marks for using LATEX. I generally suggest the open source Text Studio
for production of reports, manuscripts, and theses in LATEX. The program can be downloaded via
https://www.texstudio.org/.

References

[Fabozzi and Jones, 2019] Fabozzi, F. J. and Jones, F. J. (2019). Foundations of Global Financial
Markets in Institutions. MIT Press, Cambridge, 5th edition.

[Markowitz, 1952] Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1):77–91.

[Markowitz, 1959] Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Invest-
ments. John Wiley & Sons Inc., New York.

19

https://www.texstudio.org/

	Introduction
	Installation
	Creating and Running a Simple Program
	Installing Python Interpreter Packages
	Monthly Returns
	Python Script
	Task Activity
	Reporting Guidelines
	Introduction
	Python Script
	Task Activity
	Reporting Guidelines

